# Surgical management of chronic empyema

#### Dr. Fariborz Rousta

Assistant professor of Thoracic Surgery

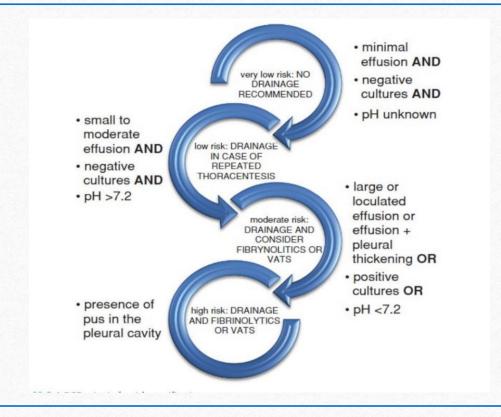
**Cardiothoracic Surgery Department** 

Tabriz University of Medical Sciences

## Empyema staging

Stage I: exudative (0–2 weeks)

- · alteration in fluid production and re-absorption balance:
- · free-floating, serous fluid
- pH >7.2, LDH <1000 U/L, glucose >60 mg/dL
- · no organism present


Stage II: fibrinopurulent (1–6 weeks)

- activation of the coagulation cascade, down regulation of fibrinolysis, fibrin deposit:
  - · cloudy or purulent effusion, loculations
  - WCC >500/microL, ph <7.2, LDH >1000 U/L, glucose <60 mg/dL
- bacterial colonization

Stage III: organizing (5 + weeks)

- · fibroblast chemotaxis:
- · frank pus or no fluid at all
- WCC >15000/microL, ph <7, LDH >1000 U/L, glucose <50 mg/dL</li>
- pleural cortex
- fibrothorax

#### ACCP criteria for risk stratification



### Surgery indications in chronic empyema

• Stage 2 empyema:

**VATS** debridement

• Stage 3 empyema:

**VATS** debridement

**Thoracotomy** 

**Decortication** 

#### STAGE II: STAGE I: STAGE III: · more than 50% multiloculated effusion pleural cortex opacification at CXR · failure of lung re-expansion · presence of septa failure of antibiotic therapy repeated thoracentesis · uniloculated effusion and drainage alone · symptomatic patient · persistent signs and symptoms of sepsis **VATS** DECORTICATION **VATS DEBRIDEMENT** THORACOTOMY **CHEST DRAIN** DEFERRED SURGICAL **FIBRINOLYTICS** DECORTICATION

## Type of surgery

**VATS** Debridement

Decortication: via VATS

**Thoracotomy** 

Open drainage

#### STAGE II EMPYEMA TRAETMENT

- The American College of Chest Physicians in 2000 reviewed stage II empyema patients treated with
  - (1) no drain
  - (2) thoracentesis
  - (3) chest tube
  - (4) fibrinolytics
  - (5) VATS
  - (6) thoracotomy

#### **STAGE II**

#### • Failure rate:

40% for chest drain alone

15% for chest drain in association with fibrinolytics

10% for thoracotomy

none for VATS debridement.

#### **STAGE II**

• Risk factors for unsuccessful chest drainage in stage II

large effusions

lobulated effusions

frankly purulenteffusions

positive cultures

#### STAGE III EMPYEMA TRAETMENT

- Stage III empyema typically occurs 4 to 6 weeks from the development of a pleural effusio
- That is characterized by a rigid cortex encasing the lung, the chest wall, and the diaphragm.
- The progressive thickening of the pleura involving all pleural surfaces define a condition named "fibrothorax."

#### STAGE III

Nevertheless, at this stage chest drain and antibiotics can remove fluid and control infection, but respiratory impairment requires surgical removal of the peel to restore physiology.

#### STAGE III

• Identification of the transition from the purely fibrinopurulent stage into the formation of an organized pleural cortex may not be easily achieved preoperatively.

• Imaging techniques including thoracic ultrasound and CT may not accurately identify the thickness of the visceral cortex as there will inevitably be a layer of exudate over any cortical rind.

#### STAGE III

• The actual chronicity of the pleural sepsis may not therefore become apparent until VATS debridement has been performed.

• The surgeon must then assess whether full lung re-expansion can be achieved by VATS decortication or whether an open procedure is necessary.

### VATS Versus Open Decortication

- VATS approach was successful in patients with fibrinopurulent effusion, with a conversion rate of 44% in unexpected stage III disease.
- VATS approach is therefore recommended in patients:

who are promptly referred for surgery after failure of conservative treatments (less than 2 weeks since admission)

and when gram-negative organisms are not involved.

• In all other cases open decortication (OD) via posterolateral thoracotomy should be preferred, even with intraoperative conversion if pleural cortex is identified.

### VATS Versus Open Decortication

• OD may become necessary whenever adequate decortication cannot be accomplished thoracoscopically.

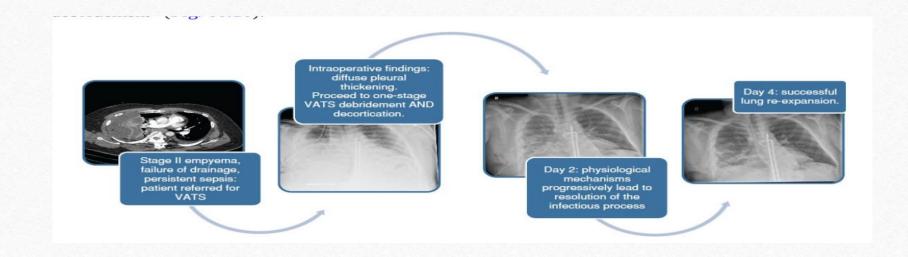
• Most of these studies confirm a superior outcome of VATS versus thoracotomy in terms of length of stay, chest tube duration, postoperative complications, pain, and mortality

# Thoracostomy (open drainage)

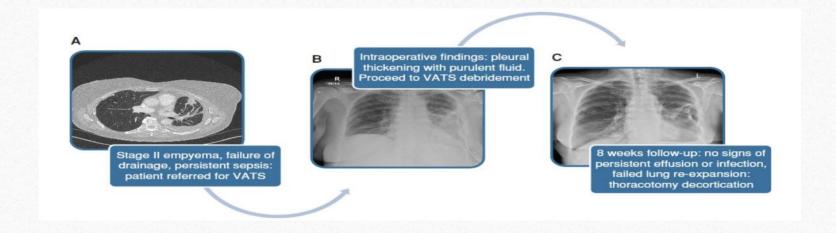
• In the more frail patient who may not tolerate a thoracotomy and either decortication or empyemectomy, the objective of surgery should be merely debridement and drainage of the infected cavity.

• This procedure can also be achieved in the spontaneously ventilating patient.

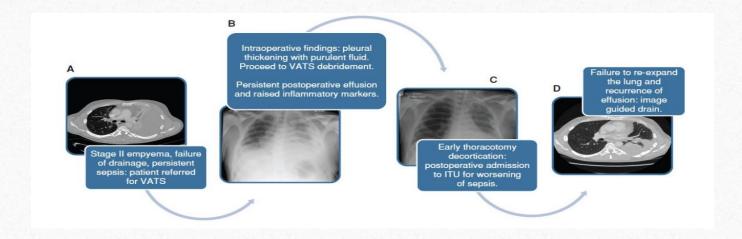
### **Thoracostomy**


This can be achieved by a small rib resection, the creation of a thoracostomy, and VATS debridement via the stoma.

#### EFFECTS OF DECORTICATION ON LUNG FUNCTION AND CHEST WALL REMODELING


• Pulmonary function tests have increased significantly after OD in most treated patients

• with an effect on chest wall remodeling (enlargement of intercostal spaces) assessed with diameter measurements on CT scan.


# Successful one-stage VATS debridement and decortication.



#### Successful VATS debridement



# Early thoracotomy decortication with failure of lung re-expansion and recurrence



#### REFERENCES

#### REFERENCES

- Farjah F, Symons RG, Krishnadasan B, et al. Management of pleural space infections: a population based analysis. J Thorac Cardiovasc Sura 2007;133(2):346–351.
- Grijalva CG, Zhu Y, Nuorti JP, et al. Emergence of parapneumonic empyema in the USA. Thorax 2011;66(8):663–668.
- Rahman NM, Maskell NA, West A, et al. Intrapleural use of tissue plasminogen activator and DNase in pleural infections. N Eng J Med 2011;365960:518–522
- 4. Coote N, Kay E. Surgical versus non-surgical management of pleural empyema. Cochrane Database System Rev 2005;(4):CD001956.
- Maskell NA, Davies CW, Nunn AJ; First multicenter intrapleural sepsis trial (MIST1) group. UK controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med 2005;352(9):865–874.
- Bhatnagar R, Maskell NA. Treatment of complicated pleural effusions in 2013. Clin Chest Med 2013;34:47–62.
- Davies CW, Gleeson FV, Davies RJ; Pleural Diseases Group, Standards of Care Committee, British Thoracic Society. BTS guidelines for the management of pleural infection. Thorax 2003;58s:ii18–ii28.
- 8. Waller DA. Thoracoscopy in management of postpneumonic pleural infections. Curr Opin Pulm Med 2002;8:323-326.
- British Thoracic Society Standards of Care Committee. British thoracic society guidelines for the management of community acquired pneumonia in adults. Thorax 2001;56 Suppl 4:1–64.
- Myles PR, Hubbard RB, Gibson JE, et al. Pneumonia mortality in a UK general practice population cohort. Eur J Public Health 2009;19(5):521–526.
- 11. Koenig SM, Truwit JD. Ventilator-associated pneumonia: diagnosis, treatment and prevention. Clin Microbiol Rev 2006;19(4):637-657.
- 12. Loeb M. Pneumonia in the elderly. Curr Opin Infect Dis. 2004;17(2):127-130.
- Maskell NA, Batt S, Hedley EL, et al. The bacteriology of pleural infection by genetic and standard methods and its mortality significance. Am J Crit Care Med 2006;174:817–823.
- Heffner JE, Klein JS, Hampson C. Diagnostic utility and clinical application of imaging for pleural space infections. Chest 2010;137(2):467–479.
- Colice GL, Curtis A, Deslauriers J, et al. Medical and surgical treatment of parapneumonic effusions. An evidence based guideline. Chest 2000:118:1158–1171.
- Kocijancic I, Vidmar K, Ivanovi Herceg Z, et al. Chest sonography versus lateral decubitus radiography in the diagnosis of small pleural effusions. J Clin Ultrasound 2003;31(2):69–74.
- effusions. *J Clin Ultrasound* 2003;31(2):69–74.

  17. Tu CY, Hsu WH, Hsia TC, et al. Pleural effusion in febrile medical ICU patients: chest ultrasound study. *Chest* 2004;126(4):1274–1280.
- Yang PC, Luh KT, Chang DB, et al. Value of sonography in determining the nature of pleural effusion: analysis of 320 cases. Am J. Populational 1992;150(1):202-23
- 19. Evans AL, Gleeson FV. Radiology in pleural disease: state of art. Respirology 2004;9(3):300-312.
- Kearney SE, Davies CW, Davies RJ, et al. Computed tomography and ultrasound in parapneumonic effusions and empyema. Clin Radiol 2000;55(7):542–547.
- Diacon AH, Brutsche MH, Soler M, et al. Accuracy of pleural puncture sites: a prospective comparison of clinical examination with ultrasound. Chest 2003;123(2):436–441.
- 22. Akan O, Özkan, O, Akinci D, et al. Imaged guided catheter drainage of infected pleural effusions. *Diagn Interv Radiol* 2007;13(4):204–209
- 23. Potaris K, Mihos P, Gakidis I, et al. Videothoracoscopic and open surgical management of thoracic empyema. Surg Infect (Larchmt)

- Davies HE, Davies RJ, Davies CW; BTS pleural disease guideline group. Management of pleural infection in adults: British Thoracic Society Pleural Disease Guideline 2010. Thorax 2010;65:ii41–ii53.
- 25. Heffner JE. Indications for draining a parapneumonic effusion: an evidence based approach. Semin Respir Infect 1999;14(1):48–58.
- Rahman NM, Maskell NA, Davies CW, et al. The relationship between chest tube size and clinical outcome in pleural infections. Chest 2010;137(3):536–543.
- Atchabaian A, Laplace C, Tazarourte K. Occlusion and malposition of small-bore chest tubes for pleural infections. Chest 2010;138(3):760.
- Maier A, Domej W, Anegg U, et al. Computed tomography or ultrasonically guided pigtail catheter drainage in multiloculated pleural empyema: a recommended procedure? Respirology 2000;5:119–124.
- Thourani VH, Brady KM, Mansour KA, et al. Evaluation of treatment modalities for thoracic empyema: a cost effectiveness analysis.
   Ann Thorac Surg 1998;66:1121–1127.
- Cameron R, Davies HR. Intra-pleural fibrinolytic therapy versus conservative management in the treatment of adult para pneumonic
  effusions and empyema. Cochrane Database Syst Rev 2008;(2):CD002312.
- 31. Tenconi S, Waller DA. "Empyema thoracis". Surgery (Oxford) 2014;32(5):236-241.
- Wozniak CJ, Little AG. Optimal initial therapy for pleural empyema. In Ferguson MK, ed. Difficult Decisions in Thoracic Surgery. Springer-Verlag London Ltd; 2011;385–393.
- 33. Wait MA, Sharma S, Hohn J, et al. A randomised trial of empyema therapy. Chest 1997;111:1548-1551.
- Rathinam S, Waller DA. Plerectomy decortication in the treatment of the "trapped lung" in benign and malignant pleural effusions. Thorac Sura Clin 2013;12:51–61.
- Lardinois D, Gock M, Pezzetta E, et al. Delayed referral and gram-negative organisms increase the conversion thoracotomy rate in patients undergoing video-assisted thoracoscopic surgery for empyema. Ann Thorac Surg 2005;79:1851–1856.
- Waller DA, Rengarajan A, Nicholson FH, et al. Delayed referral reduces the success of video-assisted thoracoscopic debridement for post-pneumonic empyema. Resp Med 2001;95:836–840.
- 37. Tong BC, Hanna J, Toloza EM, et al. Outcomes of video-assisted thoracoscopic decortication. Ann Thorac Surg 2010;89:220–225.
- Waller DA, Rengarajan A. Thoracoscopic decortication: a role for video-assisted surgery in chronic postpneumonic pleural empyema. *Ann Thorac Surg* 2001;71(6):1813–1816.
- 39. Pompeo E. State of art and perspectives in non-intubated thoracic surgery. Ann Transl Med 2014;2(11):106.
- Kho P, Karunanantham J, Leung M, et al. Debridement alone without decortication can achieve lung re-expansion in patients with empyema: an observational study. *Interact Cardiovasc Thor Sur* 2011;12:724–727.
- 41. Arsalane A, Zidane A, Atoini F, et al. Pulmonary decortication: value of lung function recovery. Rev Pneumol Clin 2009;65(5):279-286.
- Gokce M, Okur E, Baysungur V, et al. Lung decortication for chronic empyema: effects on pulmonary function and thoracic asymmetry in the late period. Eur J Cardio-Thorac Surg 2009;36:754–758.
- Yang HC, Han J, Lee S, et al. Evaluation of decortication in patients with chronic tuberculous empyema by three-dimensional computed tomography densitometry. Thorac Cardiovasc Surg 2013;61(2):159–166.
- Medical Research Council on the Aetiology of Chronic Bronchitis. Standardised questionnaire on respiratory symptoms. Br Med J 1960:2:1665.
- Casali C, Storelli ES, Di Prima E, et al. Long term functional results after surgical treatment of parapneumonic thoracic empyema. Interact Cardiovasc and Thorac Surg 2009;9:74–78.
- Chan DT, Sihoe AD, Chan S, et al. Surgical treatment for empyema thoracis: is video-assisted thoracic surgery "better" than thoracotomy? Ann Thorac Sura 2007:84:225–231.
- Rzyman W, Skokowski J, Romanowicz G, et al. Decortication in chronic pleural empyema—effect on lung function. Eur J Cardio-thorac Surg 2002;21:502–507.